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Control of Kirchhoff vortices by a resonant strain

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
(Received 17 September 1998; revised manuscript received 28 Decembgr 1998

It is shown that placing a Kirchhoff vortex in a weak resonant strain having uniform, but oscillating strain
rate with chirped oscillation frequency, allows adiabatic control of the axis patia/b and rotation phase of
the vortex. The phenomenon has a threshold on the amplitude of oscillations of the strain rate and is due to the
persisting nonlinear phase lockirigutoresonangebetween the elliptic vortex and the adiabatically varying
straining flow.[S1063-651X99)06104-9

PACS numbegps): 47.32.Cc

I. INTRODUCTION tions, this result must pass stability test with respect to small
deviations from the elliptic vortex model. The classical
Kirchhoff vortex[1] is a famous two-dimensional vortex Love’s work[9] shows that freely rotating Kirchhoff vortices
patch solution in ideal fluids. It has constant vorticity =~ become unstable with respect to boundary perturbations for
permanent elliptic shap&semiaxisa andb, a>b), and ro- p>3. A similar problem in the presence of a straining flow
tates around its centésay,x=y=0) with constant angular was studied by Dritsch¢lL0], who showed that the effect of
frequencyQ = wab/(a+b)2. The individual fluid particles @ weak strain on stability is small. Thus, the suggested au-
in this vortex move ortircular, off-center trajectories with toresonant control of elliptic vortices is applicable to moder-
angular frequencyQ. In the present paper we shall describeate axis ratiosp<<3. The scope of our presentation will be as
a method of controlling the axis ratip=a/b and rotation follows. In Sec. Il we shall discuss various evolution stages
phase of the Kirchhoff vortex by placing it in a straining flow of autoresonant elliptic vortices, and illustrate the theory by
u(x,t)y=x=ex; v(y,t)=y=—ey, where spatially uniform numerical examples. Section Ill will summarize our conclu-
strain rates(t) =g+ & cosy(t) is small (i.e., e/w<1), os-  sions.
cillates in time, and has alowly varyingfrequencyA(t)

= . Kida [2] showed that the presence of the strain still Il. RESONANT VORTEX DYNAMICS

angled between the major axsand thex axis are governed yorticity w is conserved and we have only two independent
by variables in the problem. The convenient set of such vari-

_ ables is the axis ratip and 6 for which Eq.(1) yields
a=cacog260), b=-ebcog26),
p=2¢ep Ccog26),

6=Q— [ (a?+b?)/(a®—b?)]sin(26). (1) ,
20=20-2¢[(p?+1)/(p>—1)]sin(26), ")
Steady-state solutions of this dynamical system with constant
e were studied by Moore and Saffm#8l; Kida [2] consid- whereQ=wp(p+1)~2. We assume that all the parameters
ered the unsteady case, and Nidligeneralized the problem and time in Eq(2) are normalized and set to be dimension-
to include stretching along the rotation axis of the vortex in aless. The natural normalization in our system is obtained by
three-dimensional strain. Here, we study evolution of Kirch-using some characteristiffixed) value « of the rate of
hoff vortices in a straining flow with oscillating strain rate, as change of the driving frequency, so the dimensionless time
these oscillations resonate/at= 2} with the particles inthe in Eq. (2) is 7= Y%, while w,e (and laterA) are o™ Y20
vortex flow. We shall exploit nonlinear phase-lockitau- o~ Y% (anda™Y2A) in previous notations. Suppose that ini-
toresonance phenomenon in manipulating the vortex by tially, at 7= 7, one starts with a circuldip(7y) =1] vortex,
chirping the frequency of the strain rate. In the past, au- while the oscillation frequency (7o) of the strain rate is far
toresonance was used in particle accelerafdis atomic  from the resonant valué\,=w/2=2Q,_,. Suppose also
physics[6], nonlinear dynamic$7], and waved8], so the thatA(t) decreasein time and passeA, at 7= 7, (we shall
present paper comprises an extension of autoresonance idestt 7,=0 in the following. A typical evolution, illustrating
to fluid dynamics. In particular, we shall show that, within the autoresonance in our system in this case, is presented in
the elliptic model, by using aveak straining flow E/w Fig. 1. The figure shows the numerical solutions of E).
<1) and starting from a circularp&1) vortex, one can for p and the phase mismatdh= 26— (7) (mod2n) in the
significantly increase the axis ratioby slowly loweringthe  case of linearly decreasing driving frequencdy=3w— 7,
frequency of oscillations of the strain rate. In real applica-i.e., y=y+ 2w7—37°. The parameters in these calcula-
tions werew=100, g4 ,=0.25, /=0 and initial conditions
p=1+o0, 0<1, andf=0, at 7= —20. We addedr in the
*FAX: (972)-2-651-2483. Electronic address: initial condition because the phase equatioriZnhas a sin-
lazar@vms.huji.ac.il gularity atp=1 and one must be careful in solving the sys-
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7 < - ; , ; ‘ term fully nonlinear autoresonance to describe the system’s
evolution in this case. The detailed analysis of these different
] stages of vortex dynamics is presented below.

A. Initial phase trapping stage

We use smalls=p—1 expansion in Eq(2) to describe
weak deformations of the vortex from initially circular pro-
file, as one passes through resonance with the oscillating
strain rate. Then, t®(5%),

3 EXACT ] ,
RESONANCE P 5=2¢c0g26),

AXIS RATIO, P; MISMATCH, @

2 A B P C 1 20=30(1-76%)—2:6 'sin(20). ()

-

‘ T / 7, ‘ We shall neglect thes? term in Eq.(3) in the initial phase
20 15 10 5 7,0 5 10 15 trapping staggbut include it later in studying the weakly

TIME, T nonlinear interaction Then, Eq.(3) can be rewritten as a
single equation foZ= & exp(26):

FIG. 1. The axis ratiop=a/b and mismatch®=26—y .
(mod2m) versus dimensionless timefor linearly decreasing driv- Z=i(wl2)Z+2¢. 4)

ing frequencyA = 3w— 7. The system evolves in three stages: the . . L A " .
initial phase trapping stageegion A), weakly nonlinear stagére- The solution of this equatiofwith zero initial conditiongis

gion B), and fully nonlinear autoresonantegionC). The smooth 2= 2/ 7 e(7")exdio(r—7)/2)]d7". For further progress
curve starting at-=0 is the exact resonance lin€)2p)=A(7). one must specify the time dependence #{7)=¢

+ &, cosy(7). For simplicity, as in Fig. 1, we shall assume
tem numerically. We used 16<o<10"* with no visible  the linear dependence of the driving frequentyr) = w/2
differences from the results shown in Fig. 1. One can see iR 7, s0 /= i)y+ 2 w7— 3 2. Then, upon integration,
Fig. 1 that shortly beyond,, the vortex rotation phase locks ) . ) . .
to that of the oscillations of the straining float ® ~3/2 Z=4i(so/0)[1-€ P 0] +ig, [mel2e" e[ F(n)]7
(mod2m)], while for 7>0 the axis ratio changes signifi- _ )
cantly, but preserves the approximate resonance condition +e~'(“0"® /2)[F*(T)]Z;7ww :
A(7)=2Q[p(7)] continuously, despite the variation of
(the exact resonance curve, starting-at0, is shown in the ~WhereF(7)=[f(#/\m)+ig(7/\/m)]exp(-i~/2), andf and
figure for comparison We also see that the solutions have g are the auxiliary functions associated with Fresnel integrals
slowly evolving averages and superimposed small, rapidyc(z) and S(z) [11]. For |7[>1, f and g scale asf
varying oscillations. The analysis of trglow phase-locked ~m Y27 ' andg~m Y2773, so, if |7y|>1, we can write
evolution, which is the signature of the autoresonance in th& (1)~ 27" exp(~i/2) in the initial excitation stage.
system, comprises our main goal in the following. To sim-Then, if 75 ;<@ (conditions assumed to be satisfied in the
plify this analysis we shall formally split the evolution into following), we get an approximationZ=4i(gq/w)[1

three stages. In the first stage, at early timggsr<m; _ei(w/Z)(T*fo)]Jrisleielf(f)[fl_Talei1/2(72*73)] for ro<rt
<, (regionAin the figurg, when the system is still far from <7, Finally, by defining the phase mismatch=26
the resonancep~1 and we can neglect the variation @f  — y(7) between twice the rotation angle of the elliptic vortex

with time, i.e. set)~w/4 in the equation fom in Eq. (2). and the phase of the driving oscillation, we obtain
This simplified system predictésee below strong phase . . .

locking between the rotation phase of the vortex and that of 0 €XHI(P—7/2)]=—iZ exfd —iy(r)]=e1/7+D, (5

the driving oscillations as one approachesr,;. We shall \\here

use the terminitial phase trapping stagdo describe this

early evolution. Beyondr; one must include the depen- D:(480/w)e*i¢[1—e‘(‘”’2><7*70>]—glrgleil’z(TZ*%)_

dence in{). However, since in regiom in the figure ¢4

<7<1,), pis still close to unity, one can use smal=p  Note that both R® and ImD oscillate around zero, but re-
—1 expansion of) to O(6?). This is theweakly nonlinear main bounded, sinclReD,Im D|<(8zy/w)+(e1/|7|). On the
autoresonant evolution stage. We shall show that the smadther handg, /| 7| in Eq. (5) grows asr moves towards- .
parametek/w must be above a certathresholdfor having The phase trapping occurs Whe{]/| 7-| becomes larger than
persisting autoresonance in the weakly nonlinear evolutiomhe upper bound onfReD| and not later thanr=7=
stage. Finally, beyond, (region C), as the autoresonance —g,[(8gy/w)+ (e1/|7|)]" . Our example(eq=0.25, @
(phase locking continues, the elongation of the ellipse be- =100, r,= —20) yields the trapping prior~ —7.7. Beyond
comes significant and one must use the futlependence in  the trapping point ag{ continues to decrease and approaches
Q. We shall see that there exists a uniform approach f0|'7-1|, the first term in Eq.(5) becomes dominant and one
studying autoresonance in both regiddsnd C. Neverthe-  obtains an approximatiors exi(®—/2)]~e,/7. Thus,
less, in regiorC, the problem can be simplified by neglecting for negativer, —&,/|7| and®—3=/2 (mod2m), as 7 ap-

the interaction term in the equation fér We shall use the proachesr;. In other words, twice the rotation angle of the
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20 T 1 ; T oscillations in Fig. 1 around the slow solutigns.e., re-
18 3 @] o8 /I7] ) placede cos(%) and e sin(20) by &, cos® and ie; sin®,
ﬂ‘ MWVW\(WWVV\A ‘ respectively. Now, we seek solution of E&), wheree(7) is
16 1 I 7 continuously small |p|<1) and, to lowest order, set cos
o 14 ~1 in the second equation ii®), i.e., use
512 2 b~T—twd*+e,lb. (7
= 1ol
<zf 10 Furthermore, we shall writeS=d(7)—A(7), where the
RK:] monotonically varying partl(7) is defined by equating the
= 5 1 right-hand side of Eq(7) to zero, i.e.,7—  wd?+¢,/d=0,
5 1 while A(7) is assumed to be smallX|/d<1). Then, by
T 4 linearization,
P~
2 A=S1-g,sing, p=SA, ®

LR A
20 -16 -12E ;& -4 where S(t)=%wd+e,/d%. The Hamiltonian for this dy-
TIME, namical system iH=3SA2+V (¢), with the effective
FIG. 2. The evolution of the phase mismatbh(mod2r) [Fig. ~ POtentialVes=—¢/S—g; cose. The slow time dependence
2(@)] and =p—1 [Fig. 2b)] in the initial phase trapping stage. €NtersH parametrically viad. The necessary condition for
The curves 1, 2, and 3 correspond to three different strain ratpavingstablesolutions of Eq(8) is the existence of trapped
oscillation amplitudes:;=0.125, 0.25, and 0.5, respectively. The Phase space regions for valuesdah the region of interest.
phase mismatch curves fe5=0.25 and 0.5 are shifted by=2and ~ Thus we requires;S>1 in the weakly nonlinear evolution
47, respectively, for better disposition. The straight lines in Fig.stage. On the other handS has a minimum S,
2(b) are curves, /| 7. =3(g,0%) 8 at d=d,=2(g,/0)Y3 Therefore, the neces-
sary condition for stability i%1S,,> 1, yielding the threshold
elliptic vortex locks to the phase of oscillations of the driving condition on the strain rate:
strain rate, i.e., the fluid particlegsonatewith the driving
oscillation. We illustrate our predictions in Fig. 2, showing g1>en=(%) w12 9
the numerical results fob [Fig. 2@)] and § [Fig. 2(b)] ver-
sus time for the same parameters as in Fig. 1, butefpr [Note that if one returns to the dimensional parameters by
—0.125, o= and three values of,=0.125, 0.25, 0.5 replacingo—a *?w ande;—a Y%, condition (9) be-
(curves 1, 2, and 3, respectivelyOne can see in the figure comese;>(2a)¥w Y2 wheree;, w, and a¥2 have the
that in all the cases, the phase trapping starts not laterthanysual dimension of séd.] In addition to Eq.(9), one must
defined above and, at some<0, ®—3/2 (mod2r) while  jmpose the adiabaticity conditiofiy|»~2<1 on the rate of
8—e1/|7| [the straight lines in Fig. ®)]. One can also see variation of the characteristic frequenay~(£,S)2 of the
in the figure thatr; can be chosen so thais still small(say,  oscillations of¢ and A. These two conditions are sufficient
5<0.)) justifying the linear analysis. For instance, in Fig. 2, for having the autoresonandge., continuing and stable
7,=—3, =5, —8 for the cases 1, 2, and 3, respectively.phase lockinge~0) in our system. Simple analysis shows
Since bt_eyondrl . S continues to increase, we shall include that|ij|V72:8171/2875/2d71(%wd_s) reaching, ad~d,/2
the nonlinearity in the problem for> 7,. Nevertheless, we —23
can use the relative smallness&fior some time and start the )
analysis within a weakly nonlinear formalism. Note that the
linear analysis is still valid at; and, therefore, the transition
to the weakly nonlinear theory at; is continuous with no
need in studying an intermediate case.

the absolute maximum value%(sfw , SO the adiabatic-
ity condition yieldse;>(0.5)**w~ %2, which has the same
scaling as Eq(9), but is slightly less restrictive. Thus con-
dition (9) is both necessary and sufficient for autoresonance
in the weakly nonlinear interaction stage. Numerical calcu-
lations indicate that this threshold is rather sharp. Figure 3
_ _ shows the results of numerical solutions of Ef) in two
B. Weakly nonlinear evolution cases, where all the parameters are as those in Fig. 1, but

Beyond the initiallinear phase locking stage described £1=0.114(curves 3 and£,=0.134(curves 2, i.e., below
above, we include thé? term in the second equation (ﬁ) and above the threshold valu%=0.124 for our case. One
to properly describe the weak nonlinear dynamicsrat can see that the phase locking discontinues-a@ for &;
> r,. Assuming the continuing phase locking in the system<e, preventing fully nonlinear autoresonance in the sys-
we use EQ.(3) to write slow equations foré and p=® tem, while the growth op saturates shortly after the dephas-

—37/2, ing. A different characteristic signature of the transition to
autoresonance is illustrated in Fig. 4, showing the depen-

S=g,sine, dence of the axis ratip at the final integration time 1(

=15) on the amplitude of the oscillationss of the strain
p=1—tws’+e,6 1cose. (6) rate. We used two values of vorticity in these calculations

[w=100 (circles and w=200 (triangles], while all other
Here we have discarded the rapidly varyimgnresonantn- parameters and initial conditioat 7= —20) are the same
teraction termgthese are the terms responsible for the fasts in Fig. 1. We see that below the thresh@ilicated by
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= 8 ‘ v ‘ 1 ( form description of both the weakly and strongly nonlinear
N 2 3) autoresonance. We need only the initial phase locking as-
T 6 ] Ny LLf ] S N
@) [ | AT sumption in this developmefatecall that the phase locking is
2 af established during the initial linear interaction stadgedeed,
% Al let us return to the original systef2); assume(starting 7
S =7,) the continuing phase locking in the system and write
% 5 5 s 1 . the slow equations fop and ¢ =® — 37/2 [compare to Egs.
TIME, T (6) and(7)]:
o’ ®) p=eipsing, p=7-F(p), (10
J4f .
2 2 1 where F=w/2—20(p)—s1(p?+1)/(p?>—1). Next, we
;j ol 1| write  p=po(7)—A(7), where po(7) is defineq via
) Flpo(7)]=7 and assume thai (t)|/po<1. Then, by linear-
é 1 ization, Eqs.(10) yield [compare to the weakly nonlinear
Lo 5 0 5 10 15 system(8)]
TIME, T

A=G l—g,pgsing, @=GA, (11

FIG. 3. The evolution of the system belogcurves 1,¢;
=0.1149 and abovecurves 2,¢,=0.139 the threshold values(, where G=dF/dpy=2w(py—1)(po+ 1)—3+481p0(p(2)
=0.124) given by Eq(9). (a) Phase mismatch versus timetb) ~ —1)~2, Equations(11) again comprise a Hamiltonian sys-
Axis ratio versus timg. The .dephasing takes place whens, and  tem with H= 1GA%+ Vg and Vegi= — ¢/ G—g1pg COSe.
the autoresonance discontinues. For small values ofs=p,—1, the problem reduces to that

) ] ) ] ] ) studied in the weakly nonlinear stage, beca@se S in this
yerncal lines in the figurg the f_lnal val_ue ofp is almost  |imit. Now, we observe tha6 is positive, SoF(po) is an
independent ofv, as should be in the linear theory. In the jycreasingfunction of p, and, thereforep, is anincreasing
vicinity of the predicted threshold, the final amplitude jumpsfynction of time. The necessary condition for having stable
to the value, approximately satisfying the nonlinear resogcillations ofA and ¢ is £,p,G>1. As in the weakly non-

nance condition 2(p)=A(7) at the final integration time. |inear theory, this condition guarantees the existence of a
The transition to fully nonlinear autoresonant evolution takegyapned region in thé,¢) phase space. One finds that func-
plgce at intermediate times and we proceed to the analysis gf, poG has a minimum at smal and a maximum ap,
this stage. ~3.7. We are interested in the range p,<3 to avoid the
instability of the elliptic vortex boundar{f]. In this range,
C. Fully nonlinear autoresonance the conditionepoG>1 is most difficult to satisfy at the

The weakly nonlinear theory allowed a simple descriptionMinimum of poG at small values ob. This yields the thresh-
of the autoresonance threshold problem yielding expressiofld condition(9) as discussed previously. Above the thresh-

(9). However, one can use similar ideas in developingia ~ ©/d, Whenp, increases with time, the system remains in the
trapped statéoscillatingA and ¢), provided the variation of

po is sufficiently slow. In other words, for having continuing
autoresonance, one must also satisfy the adiabaticity condi-
tion

4 T T

o o0
%0 o SN

|y v—2<1, 12

w
T

where v?=¢,p,G is the characteristic frequency of small
autoresonant oscillations. We have already analyzed this
condition in the weakly nonlinear limit and showed that the
& AL AABLDLAALNA left-hand side of Egq.(12) reaches the maximum of
1(e2w) PRatpg~1+(e;/w)*® Whenp, increases beyond
this maximum, the adiabaticity condition is first easier to
satisfy. Later, the analysis can be simplified fay large
o ° enough to neglect the interaction term in the expression for
F(pg). Then, the relationF(pg)~w/2—2Q0(pg)=7 is
equivalent to the exact resonance conditi@=Q(pg)
=2A(7). This equivalence explains the satisfaction of the
approximateresonance conditiof(p)=3A(7) by the sys-
FIG. 4. The value of the axis rati@at the final integration time f[em in the_ advanced autqrespnanceist(fhwondrz 0), as .
7=15 versus strain rate oscillation amplitude for two vorticity |IIus.trated in the examplg n Flzg' 1. Within t,he Same approxi-
casesw=100 (circles and =200 (triangles. Other parameters Mation of F(po), we find v*~—2s1p0Q¢=2810p0(pg
are the same as in Fig. 1. The vertical lines show the position of the- 1) (po+1) 5. Then [v|»~2=0.177,0°%) Y2p, %7 p3
theoretical threshold,, [see Eq(9)] for autoresonance. —4po+1)(po+1)"Apo—1)"%2 This function decreases

FINAL AXIS RATIO, P
N

]

AO
02080408057 P .
0 0.05 0.1 0.15 0.2

STRAIN RATE OSCILLATION AMPITUDE, 81

1
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TIME, T

IIl. CONCLUSIONS

We have studied autoresonant evolution of Kirchhoff vor-
tices driven by a weak strain with oscillating strain rate and
chirped oscillation frequencw (t). In autoresonance, the
system self-adjusts the axis ratio of the vortex, so that twice
the rotation phase of the ellipse is continuously locked to that
of the oscillating strain rate despite the variationAof The
initial phase locking in the system is an important ingredient
in having the autoresonance and requires starting with nearly
circular vortex and passing the linear resonance w/2 by
slowly decreasingA(t). The oscillation amplitude of the
strain rate must be sufficiently small, but also satisfy the
threshold condition(9). In dimensional notations, these re-
quirements can be written as>k;/w>(4a/3w?)%* and
guarantee both the perturbative character of autoresonant in-
teraction and stability during the weakly nonlinear evolution
stage. Furthermore, the adiabaticity conditid®) must be

FIG. 5. The evolution of the system for oscillating chir, satisfied for sustaining autoresonance in' the strongly nonlin-
=Lw+ Aysin(@2T), of the frequency of the strain rate. Repeti- ear §t_age, Wh_ere the elongatlon_of the elllptl_c vortex becomes
tive autoresonant excitations during two successive periods of oignificant. Finally, at axis ratigy>3, similarly to free
cillations of A are shown. Kirchhoff vortices[9], we expect the autoresonant solution
to become unstable with respect to perturbations of the ellip-

with p, in the range of interest (& po<3). Therefore, the tic vortex boundary.

adiabaticity condition(12) is easier to satisfy in the fully ~ Our theory can be generalized to include the possibility of
nonlinear regime with the increase pf in this range. Note time varying vorticityw(t), when one adds the axial strain-
that within our Hamiltonian picture, the product ing flow velocity component, i.e., uses the straime,X, y
=(A) am(®) amp Of the amplitudes of oscillations of the de- =~ &yY, 2=¢;Z [4], wheree,—e,+s,=0 for continuity.
pendent variables in E¢11) is an adiabatic invariant. In the Also, instead of oscillating the strain rate, one can ese
fully nonlinear regime, one findsee the second equation in =const, but addslowly varyinguniform vorticity 2y(t) in
(11)] that (@)amp~(2|96||/,,)1/2' while (A) amp= /() amp the perturl_amg flovvx_=sx—yy, y=—gey+ yX. The_ evol_u-
~(31v/|Q¢)Y2 Therefore, the initial smallness buaran- tion equations in this case are the same as (ERif (1 is

tees the continuing smallness of the autoresonant oscill replaced byd + y(t) [2]. Therefore, we expect tra(13|t|on o

tions Hutoresonance as decrease§ and passes.the linear reso-
Wé conclude our discussion of autoresonant elliptic Vor_nance _2y+ w/2=0 at some time. At later t|mes,_the axis
tices by demonstrating that the time dependence of the oscifatIo will continue to increase, in order fo sustain the ap-
lation frequencyA(r) of the strain rate in autoresonance
needs not be necessarily linear, as long as it is slow enoug
This is illustrated in Fig. 5, presenting numerical solutions of

Eqg. (2) in the case whem\(7) oscillates around the linear

o))

AXIS RATIO, P; MISMATCH, ®
no w &0

-

-80 0 2

proximate nonlinear resonance relati6X p(t)]+ y(t)~0
with the decrease dfyl. The vortex angle, in this case, re-
Mmains nearly constant¥é 7/4), as the axis ratio continues
to grow. In addition to these applications, it seems interesting
. . o ] to implement autoresonant ideas in more complex vortex
resonance, i.eA=3w—AgsinGm7T), with Ag=10 andT  gystems, such as vortices near walls or driven multiple vor-
=20, while other parameters and initial conditions are theex structures. Other challenging goals are inclusion of vis-

same as in Fig. 1. The figure shows successive increases aggsity in the theory and experimental observation of au-
decreases of the ellipticity of the vortex patch in two oscil-toresonant elliptic vortices.

lation periods ofA(7). The figure also illustrates that, in the

vicinity of the linear resonance, autoresonant excitations are

un_io_lirectional and the phase _trapping occurs only when the ACKNOWLEDGMENT
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