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Control of Kirchhoff vortices by a resonant strain

L. Friedland*
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 17 September 1998; revised manuscript received 28 December 1998!

It is shown that placing a Kirchhoff vortex in a weak resonant strain having uniform, but oscillating strain
rate with chirped oscillation frequency, allows adiabatic control of the axis ratior5a/b and rotation phase of
the vortex. The phenomenon has a threshold on the amplitude of oscillations of the strain rate and is due to the
persisting nonlinear phase locking~autoresonance! between the elliptic vortex and the adiabatically varying
straining flow.@S1063-651X~99!06104-8#

PACS number~s!: 47.32.Cc
x

be

w

til

ta

n
h

as

y
-

id
in

a

all
al
s

for
w
f
au-

er-
s
es
by

lu-

e
ent
ari-

rs
n-
by

ime

i-

d in

a-

s-
I. INTRODUCTION

Kirchhoff vortex @1# is a famous two-dimensional vorte
patch solution in ideal fluids. It has constant vorticityv,
permanent elliptic shape~semiaxisa and b, a.b!, and ro-
tates around its center~say,x5y50! with constant angular
frequencyV5vab/(a1b)2. The individual fluid particles
in this vortex move oncircular, off-center trajectories with
angular frequency 2V. In the present paper we shall descri
a method of controlling the axis ratior[a/b and rotation
phase of the Kirchhoff vortex by placing it in a straining flo
u(x,t)[ ẋ5«x; v(y,t)[ ẏ52«y, where spatially uniform
strain rate«(t)5«01«1 cosc(t) is small ~i.e., «/v!1!, os-
cillates in time, and has aslowly varying frequencyL(t)
[ċ. Kida @2# showed that the presence of the strain s
allows elliptic patch solutions, but the values ofa andb and
angleu between the major axisa and thex axis are governed
by

ȧ5«a cos~2u!, ḃ52«b cos~2u!,

u̇5V2«@~a21b2!/~a22b2!#sin~2u!. ~1!

Steady-state solutions of this dynamical system with cons
« were studied by Moore and Saffman@3#; Kida @2# consid-
ered the unsteady case, and Neu@4# generalized the problem
to include stretching along the rotation axis of the vortex i
three-dimensional strain. Here, we study evolution of Kirc
hoff vortices in a straining flow with oscillating strain rate,
these oscillations resonate atL52V with the particles in the
vortex flow. We shall exploit nonlinear phase-locking~au-
toresonance! phenomenon in manipulating the vortex b
chirping the frequencyL of the strain rate. In the past, au
toresonance was used in particle accelerators@5#, atomic
physics@6#, nonlinear dynamics@7#, and waves@8#, so the
present paper comprises an extension of autoresonance
to fluid dynamics. In particular, we shall show that, with
the elliptic model, by using aweak straining flow («/v
!1) and starting from a circular (r51) vortex, one can
significantly increase the axis ratior by slowly lowering the
frequency of oscillations of the strain rate. In real applic
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tions, this result must pass stability test with respect to sm
deviations from the elliptic vortex model. The classic
Love’s work@9# shows that freely rotating Kirchhoff vortice
become unstable with respect to boundary perturbations
r.3. A similar problem in the presence of a straining flo
was studied by Dritschel@10#, who showed that the effect o
a weak strain on stability is small. Thus, the suggested
toresonant control of elliptic vortices is applicable to mod
ate axis ratios,r,3. The scope of our presentation will be a
follows. In Sec. II we shall discuss various evolution stag
of autoresonant elliptic vortices, and illustrate the theory
numerical examples. Section III will summarize our conc
sions.

II. RESONANT VORTEX DYNAMICS

Since equations~1! conserve the area of the ellipse, th
vorticity v is conserved and we have only two independ
variables in the problem. The convenient set of such v
ables is the axis ratior andu for which Eq.~1! yields

ṙ52«r cos~2u!,

2u̇52V22«@~r211!/~r221!#sin~2u!, ~2!

whereV[vr(r11)22. We assume that all the paramete
and time in Eq.~2! are normalized and set to be dimensio
less. The natural normalization in our system is obtained
using some characteristic~fixed! value a of the rate of
change of the driving frequency, so the dimensionless t
in Eq. ~2! is t[a1/2t, while v,« ~and laterL! are a21/2v,
a21/2« ~anda21/2L! in previous notations. Suppose that in
tially, at t5t0 , one starts with a circular@r(t0)51# vortex,
while the oscillation frequencyL(t0) of the strain rate is far
from the resonant valueL r5v/252Vp51 . Suppose also
thatL(t) decreasesin time and passesL r at t5t r ~we shall
set t r50 in the following!. A typical evolution, illustrating
the autoresonance in our system in this case, is presente
Fig. 1. The figure shows the numerical solutions of Eq.~2!
for r and the phase mismatchF52u2c(t) ~mod2p! in the
case of linearly decreasing driving frequency,L5 1

2 v2t,
i.e., c5c01 1

2 vt2 1
2 t2. The parameters in these calcul

tions werev5100, «0,150.25,c050 and initial conditions
r511s, s!1, andu50, at t05220. We addeds in the
initial condition because the phase equation in~2! has a sin-
gularity atr51 and one must be careful in solving the sy
4106 ©1999 The American Physical Society
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PRE 59 4107CONTROL OF KIRCHHOFF VORTICES BY A RESONANT . . .
tem numerically. We used 1026,s,1024 with no visible
differences from the results shown in Fig. 1. One can se
Fig. 1 that shortly beyondt0 , the vortex rotation phase lock
to that of the oscillations of the straining flow@at F'3p/2
~mod2p!#, while for t.0 the axis ratio changes signifi
cantly, but preserves the approximate resonance cond
L(t)'2V@r(t)# continuously, despite the variation ofL
~the exact resonance curve, starting att50, is shown in the
figure for comparison!. We also see that the solutions ha
slowly evolving averages and superimposed small, rap
varying oscillations. The analysis of theslow phase-locked
evolution, which is the signature of the autoresonance in
system, comprises our main goal in the following. To si
plify this analysis we shall formally split the evolution int
three stages. In the first stage, at early times,t0<t<t1
,t r ~regionA in the figure!, when the system is still far from
the resonance,r'1 and we can neglect the variation ofV

with time, i.e. setV'v/4 in the equation foru̇ in Eq. ~2!.
This simplified system predicts~see below! strong phase
locking between the rotation phase of the vortex and tha
the driving oscillations as one approachest't1 . We shall
use the terminitial phase trapping stageto describe this
early evolution. Beyondt1 one must include ther depen-
dence inV. However, since in regionB in the figure (t1
,t,t2), r is still close to unity, one can use smalld[r
21 expansion ofV to O(d2). This is theweakly nonlinear
autoresonant evolution stage. We shall show that the s
parameter«/v must be above a certainthresholdfor having
persisting autoresonance in the weakly nonlinear evolu
stage. Finally, beyondt2 ~region C!, as the autoresonanc
~phase locking! continues, the elongation of the ellipse b
comes significant and one must use the fullr dependence in
V. We shall see that there exists a uniform approach
studying autoresonance in both regionsB and C. Neverthe-
less, in regionC, the problem can be simplified by neglectin
the interaction term in the equation foru̇. We shall use the

FIG. 1. The axis ratior5a/b and mismatchF52u2c
~mod2p! versus dimensionless timet for linearly decreasing driv-
ing frequency,L5

1
2 v2t. The system evolves in three stages: t

initial phase trapping stage~regionA!, weakly nonlinear stage~re-
gion B!, and fully nonlinear autoresonance~regionC!. The smooth
curve starting att50 is the exact resonance line 2V(r)5L(t).
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term fully nonlinear autoresonance to describe the system
evolution in this case. The detailed analysis of these differ
stages of vortex dynamics is presented below.

A. Initial phase trapping stage

We use smalld[r21 expansion in Eq.~2! to describe
weak deformations of the vortex from initially circular pro
file, as one passes through resonance with the oscilla
strain rate. Then, toO(d2),

ḋ52« cos~2u!,

2u̇5 1
2 v~12 1

4 d2!22«d21 sin~2u!. ~3!

We shall neglect thed2 term in Eq.~3! in the initial phase
trapping stage~but include it later in studying the weakl
nonlinear interaction!. Then, Eq.~3! can be rewritten as a
single equation forZ[d exp(2iu):

Ż5 i ~v/2!Z12«. ~4!

The solution of this equation~with zero initial conditions! is
Z52*t0

t «(t8)exp@iv(t2t8)/2)]dt8. For further progress

one must specify the time dependence in«(t)5«0
1«1 cosc(t). For simplicity, as in Fig. 1, we shall assum
the linear dependence of the driving frequencyL(t)5v/2
2t, soc5c01 1

2 vt2 1
2 t2. Then, upon integration,

Z54i ~«0 /v!@12ei ~v/2!~t2t0!#1 i«1Ape1/2ivt$eic0@F~t!#t0

t

1e2 i ~v01v2/2!@F* ~t!#t02v
t2v %,

whereF(t)[@ f (t/Ap)1 ig(t/Ap)#exp(2it2/2), andf and
g are the auxiliary functions associated with Fresnel integ
C(z) and S(z) @11#. For utu@1, f and g scale as f
;p21/2t21 and g;p21/2t23, so, if ut1u@1, we can write
F(t)'p21/2t21 exp(2it2/2) in the initial excitation stage
Then, if t0,1!v ~conditions assumed to be satisfied in t
following!, we get an approximationZ54i («0 /v)@1

2ei (v/2)(t2t0)#1 i«1eic(t)@t212t0
21ei1/2(t22t0

2)# for t0,t
,t1 . Finally, by defining the phase mismatchF[2u
2c(t) between twice the rotation angle of the elliptic vorte
and the phase of the driving oscillation, we obtain

d exp@ i ~F2p/2!#52 iZ exp@2 ic~t!#5«1 /t1D, ~5!

where

D5~4«0 /v!e2 ic@12ei ~v/2!~t2t0!#2«1t0
21ei1/2~t22t0

2
!.

Note that both ReD and ImD oscillate around zero, but re
main bounded, sinceuReD,Im Du,(8«0 /v)1(«1 /ut0u). On the
other hand,«1 /utu in Eq. ~5! grows ast moves towardst1 .
The phase trapping occurs when«1 /utu becomes larger than
the upper bound onuReDu and not later thant5 t̄[
2«1@(8«0 /v)1(«1 /ut0u)#21. Our example~«0,150.25, v
5100,t05220! yields the trapping priort̄'27.7. Beyond
the trapping point asutu continues to decrease and approach
ut1u, the first term in Eq.~5! becomes dominant and on
obtains an approximationd exp@i(F2p/2)#'«1 /t. Thus,
for negativet, d→«1 /utu andF→3p/2 ~mod2p!, ast ap-
proachest1 . In other words, twice the rotation angle of th
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4108 PRE 59L. FRIEDLAND
elliptic vortex locks to the phase of oscillations of the drivin
strain rate, i.e., the fluid particlesresonatewith the driving
oscillation. We illustrate our predictions in Fig. 2, showin
the numerical results forF @Fig. 2~a!# andd @Fig. 2~b!# ver-
sus time for the same parameters as in Fig. 1, but for«0
50.125, c05p and three values of«150.125, 0.25, 0.5
~curves 1, 2, and 3, respectively!. One can see in the figur
that in all the cases, the phase trapping starts not later tht̄
defined above and, at somet1,0, F→3p/2 ~mod2p! while
d→«1 /utu @the straight lines in Fig. 2~b!#. One can also see
in the figure thatt1 can be chosen so thatd is still small~say,
d,0.1! justifying the linear analysis. For instance, in Fig.
t1523, 25, 28 for the cases 1, 2, and 3, respective
Since beyondt1 , d continues to increase, we shall includ
the nonlinearity in the problem fort.t1 . Nevertheless, we
can use the relative smallness ofd for some time and start th
analysis within a weakly nonlinear formalism. Note that t
linear analysis is still valid att1 and, therefore, the transitio
to the weakly nonlinear theory att1 is continuous with no
need in studying an intermediate case.

B. Weakly nonlinear evolution

Beyond the initiallinear phase locking stage describe
above, we include thed2 term in the second equation in~3!
to properly describe the weak nonlinear dynamics at
.t1 . Assuming the continuing phase locking in the syst
we use Eq.~3! to write slow equations ford and w[F
23p/2,

ḋ5«1 sinw,

ẇ5t2 1
8 vd21«1d21 cosw. ~6!

Here we have discarded the rapidly varyingnonresonantin-
teraction terms~these are the terms responsible for the f

FIG. 2. The evolution of the phase mismatchF ~mod2p! @Fig.
2~a!# and d5r21 @Fig. 2~b!# in the initial phase trapping stage
The curves 1, 2, and 3 correspond to three different strain
oscillation amplitudes«150.125, 0.25, and 0.5, respectively. Th
phase mismatch curves for«150.25 and 0.5 are shifted by 2p and
4p, respectively, for better disposition. The straight lines in F
2~b! are curves«1 /utu.
.

t

oscillations in Fig. 1 around the slow solutions!, i.e., re-
placed« cos(2u) and « sin(2u) by 1

2 «1 cosF and 1
2 «1 sinF,

respectively. Now, we seek solution of Eq.~6!, wherew~t! is
continuously small (uwu!1) and, to lowest order, set cosw
'1 in the second equation in~6!, i.e., use

ẇ't2 1
8 vd21«1 /d. ~7!

Furthermore, we shall writed5d(t)2D(t), where the
monotonically varying partd(t) is defined by equating the
right-hand side of Eq.~7! to zero, i.e.,t2 1

8 vd21«1 /d[0,
while D~t! is assumed to be small (uDu/d!1). Then, by
linearization,

Ḋ5S212«1 sinw, ẇ5SD, ~8!

where S(t)[ 1
4 vd1«1 /d2. The Hamiltonian for this dy-

namical system isH[ 1
2 SD21Ve f f(w), with the effective

potentialVe f f[2w/S2«1 cosw. The slow time dependenc
entersH parametrically viad. The necessary condition fo
havingstablesolutions of Eq.~8! is the existence of trappe
phase space regions for values ofd in the region of interest.
Thus we require«1S.1 in the weakly nonlinear evolution
stage. On the other hand,S has a minimum Sm
5 3

4 («1v2)1/3 at d5dm52(«1 /v)1/3. Therefore, the neces
sary condition for stability is«1Sm.1, yielding the threshold
condition on the strain rate:

«1.« th5~ 4
3 !3/4v21/2. ~9!

@Note that if one returns to the dimensional parameters
replacingv→a21/2v and «1→a21/2«1 , condition ~9! be-

comes«1.( 4
3 a)3/4v21/2, where «1 , v, and a1/2 have the

usual dimension of sec21.# In addition to Eq.~9!, one must
impose the adiabaticity conditionuṅun22,1 on the rate of
variation of the characteristic frequencyn'(«1S)1/2 of the
oscillations ofw andD. These two conditions are sufficien
for having the autoresonance~i.e., continuing and stable
phase lockingw'0! in our system. Simple analysis show

that uṅun225«1
21/2S25/2d21( 3

8 vd2S) reaching, atd'dm/2
the absolute maximum value; 1

2 («1
2v)22/3, so the adiabatic-

ity condition yields«1.(0.5)3/4v21/2, which has the same
scaling as Eq.~9!, but is slightly less restrictive. Thus con
dition ~9! is both necessary and sufficient for autoresona
in the weakly nonlinear interaction stage. Numerical calc
lations indicate that this threshold is rather sharp. Figur
shows the results of numerical solutions of Eq.~2! in two
cases, where all the parameters are as those in Fig. 1
«150.114 ~curves 1! and «150.134 ~curves 2!, i.e., below
and above the threshold value« th50.124 for our case. One
can see that the phase locking discontinues att'2 for «1
,« th , preventing fully nonlinear autoresonance in the s
tem, while the growth ofr saturates shortly after the depha
ing. A different characteristic signature of the transition
autoresonance is illustrated in Fig. 4, showing the dep
dence of the axis ratior at the final integration time (t
515) on the amplitude of the oscillations«1 of the strain
rate. We used two values of vorticity in these calculatio
@v5100 ~circles! and v5200 ~triangles!#, while all other
parameters and initial conditions~at t5220! are the same
as in Fig. 1. We see that below the threshold~indicated by

te

.
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PRE 59 4109CONTROL OF KIRCHHOFF VORTICES BY A RESONANT . . .
vertical lines in the figure!, the final value ofr is almost
independent ofv, as should be in the linear theory. In th
vicinity of the predicted threshold, the final amplitude jum
to the value, approximately satisfying the nonlinear re
nance condition 2V(r)5L(t) at the final integration time
The transition to fully nonlinear autoresonant evolution tak
place at intermediate times and we proceed to the analys
this stage.

C. Fully nonlinear autoresonance

The weakly nonlinear theory allowed a simple descript
of the autoresonance threshold problem yielding expres
~9!. However, one can use similar ideas in developing auni-

FIG. 4. The value of the axis ratior at the final integration time
t515 versus strain rate oscillation amplitude«1 for two vorticity
casesv5100 ~circles! and v5200 ~triangles!. Other parameters
are the same as in Fig. 1. The vertical lines show the position of
theoretical threshold« th @see Eq.~9!# for autoresonance.

FIG. 3. The evolution of the system below~curves 1, «1

50.114! and above~curves 2,«150.134! the threshold value (« th

50.124) given by Eq.~9!. ~a! Phase mismatch versus time.~b!
Axis ratio versus time. The dephasing takes place when«1,« th and
the autoresonance discontinues.
-

s
of
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form description of both the weakly and strongly nonline
autoresonance. We need only the initial phase locking
sumption in this development~recall that the phase locking i
established during the initial linear interaction stage!. Indeed,
let us return to the original system~2!; assume~starting t
5t1! the continuing phase locking in the system and wr
the slow equations forr andw5F23p/2 @compare to Eqs.
~6! and ~7!#:

ṙ5«1r sinw, ẇ5t2F~r!, ~10!

where F5v/222V(r)2«1(r211)/(r221). Next, we
write r5r0(t)2D(t), where r0(t) is defined via
F@r0(t)#[t and assume thatuD(t)u/r0!1. Then, by linear-
ization, Eqs.~10! yield @compare to the weakly nonlinea
system~8!#

Ḋ5G212«1r0 sinw, ẇ5GD, ~11!

where G[dF/dr052v(r021)(r011)2314«1r0(r0
2

21)22. Equations~11! again comprise a Hamiltonian sys
tem with H5 1

2 GD21Ve f f and Ve f f52w/G2«1r0 cosw.
For small values ofd5r021, the problem reduces to tha
studied in the weakly nonlinear stage, becauseG→S in this
limit. Now, we observe thatG is positive, soF(r0) is an
increasingfunction of r0 and, therefore,r0 is an increasing
function of time. The necessary condition for having sta
oscillations ofD andw is «1r0G.1. As in the weakly non-
linear theory, this condition guarantees the existence o
trapped region in the~D,w! phase space. One finds that fun
tion r0G has a minimum at smalld and a maximum atr0
'3.7. We are interested in the range 1<r0,3 to avoid the
instability of the elliptic vortex boundary@9#. In this range,
the condition«1r0G.1 is most difficult to satisfy at the
minimum ofr0G at small values ofd. This yields the thresh-
old condition~9! as discussed previously. Above the thres
old, whenr0 increases with time, the system remains in t
trapped state~oscillatingD andw!, provided the variation of
r0 is sufficiently slow. In other words, for having continuin
autoresonance, one must also satisfy the adiabaticity co
tion

uṅun22,1, ~12!

where n25« lr0G is the characteristic frequency of sma
autoresonant oscillations. We have already analyzed
condition in the weakly nonlinear limit and showed that t
left-hand side of Eq. ~12! reaches the maximum o
1
2 («1

2v)22/3 at r0'11(«1 /v)1/3. Whenr0 increases beyond
this maximum, the adiabaticity condition is first easier
satisfy. Later, the analysis can be simplified forr0 large
enough to neglect the interaction term in the expression
F(r0). Then, the relationF(r0)'v/222V(r0)5t is
equivalent to the exact resonance conditionV0[V(r0)
5 1

2 L(t). This equivalence explains the satisfaction of t
approximateresonance conditionV(r)5 1

2 L(t) by the sys-
tem in the advanced autoresonance stage~beyondt50!, as
illustrated in the example in Fig. 1. Within the same appro
mation of F(r0), we find n2'22«1r0V0852«1vr0(r0

21)(r011)23. Then uṅun2250.177(«1v3)21/2r0
23/2ur0

2

24r011u(r011)7/2(r021)25/2. This function decrease
e
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4110 PRE 59L. FRIEDLAND
with r0 in the range of interest (1,r0,3). Therefore, the
adiabaticity condition~12! is easier to satisfy in the fully
nonlinear regime with the increase ofr0 in this range. Note
that within our Hamiltonian picture, the productI
5(D)amp(w)amp of the amplitudes of oscillations of the de
pendent variables in Eq.~11! is an adiabatic invariant. In the
fully nonlinear regime, one finds@see the second equation
~11!# that (w)amp;(2uV08uI /n)1/2, while (D)amp5I /(w)amp

;( 1
2 In/uV08u)

1/2. Therefore, the initial smallness ofI guaran-
tees the continuing smallness of the autoresonant osc
tions.

We conclude our discussion of autoresonant elliptic v
tices by demonstrating that the time dependence of the o
lation frequencyL~t! of the strain rate in autoresonanc
needs not be necessarily linear, as long as it is slow eno
This is illustrated in Fig. 5, presenting numerical solutions
Eq. ~2! in the case whenL~t! oscillates around the linea

resonance, i.e.,L5 1
2 v2L0 sin(1

2pt/T), with L0510 andT
520, while other parameters and initial conditions are
same as in Fig. 1. The figure shows successive increase
decreases of the ellipticity of the vortex patch in two osc
lation periods ofL~t!. The figure also illustrates that, in th
vicinity of the linear resonance, autoresonant excitations
unidirectional and the phase trapping occurs only when
driving frequencydecreasesas it passes the linear resonan
frequency1

2v. In contrast, when the frequency increases
the linear resonance the dephasing takes place and, a
pected, no autoresonance exists forL larger than1

2v.

FIG. 5. The evolution of the system for oscillating chirp,L
5

1
2 v1L0 sin(pt/2T), of the frequency of the strain rate. Repe

tive autoresonant excitations during two successive periods of
cillations of L are shown.
a-
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il-
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III. CONCLUSIONS

We have studied autoresonant evolution of Kirchhoff vo
tices driven by a weak strain with oscillating strain rate a
chirped oscillation frequencyL(t). In autoresonance, th
system self-adjusts the axis ratio of the vortex, so that tw
the rotation phase of the ellipse is continuously locked to t
of the oscillating strain rate despite the variation ofL. The
initial phase locking in the system is an important ingredie
in having the autoresonance and requires starting with ne
circular vortex and passing the linear resonanceL5v/2 by
slowly decreasingL(t). The oscillation amplitude of the
strain rate must be sufficiently small, but also satisfy t
threshold condition~9!. In dimensional notations, these re
quirements can be written as 1@«1 /v.(4a/3v2)3/4 and
guarantee both the perturbative character of autoresonan
teraction and stability during the weakly nonlinear evoluti
stage. Furthermore, the adiabaticity condition~12! must be
satisfied for sustaining autoresonance in the strongly non
ear stage, where the elongation of the elliptic vortex becom
significant. Finally, at axis ratior0.3, similarly to free
Kirchhoff vortices @9#, we expect the autoresonant solutio
to become unstable with respect to perturbations of the e
tic vortex boundary.

Our theory can be generalized to include the possibility
time varying vorticityv(t), when one adds the axial strain
ing flow velocity component, i.e., uses the strainẋ5«xx, ẏ
52«yy, ż5«zz @4#, where «x2«y1«z50 for continuity.
Also, instead of oscillating the strain rate, one can use«
5const, but addslowly varyinguniform vorticity 2g(t) in
the perturbing flowẋ5«x2gy, ẏ52«y1gx. The evolu-
tion equations in this case are the same as Eq.~1! if V is
replaced byV1g(t) @2#. Therefore, we expect transition t
autoresonance asugu decreases and passes the linear re
nance 2g1v/250 at some time. At later times, the ax
ratio will continue to increase, in order to sustain the a
proximate nonlinear resonance relationV@r(t)#1g(t)'0
with the decrease ofugu. The vortex angle, in this case, re
mains nearly constant (u'p/4), as the axis ratio continue
to grow. In addition to these applications, it seems interes
to implement autoresonant ideas in more complex vor
systems, such as vortices near walls or driven multiple v
tex structures. Other challenging goals are inclusion of v
cosity in the theory and experimental observation of a
toresonant elliptic vortices.
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